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Asymptotic Behavior of Vector Recurrences 
with Applications 

By Alan Feldstein and J. F. Traub* 

Abstract. The behavior of the vector recurrence Yn+1= Myn + wn+1 is stud- 

ied under very weak assumptions. Let X(M) denote the spectral radius of M and 

let X(M) > 1. Then if the wn are bounded in norm and a certain subspace hy- 

pothesis holds, the root order of the Yn is shown to be X(M). If one additional 

hypothesis on the dimension of the principal Jordan blocks of M holds, then the 

quotient order of the Yn is also X(M). The behavior of the homogeneous re- 

currence is studied for all values of X(M). 

These results are applied to the analysis of 

(1) Nonlinear iteration with application to iteration with memory and to 

parallel iteration algorithms. 

(2) Order and efficiency of composite iteration. 

1. Introduction. We study the behavior of the vector recurrence 

(1) In+ 1 = Myn + Wn+ 1 

under very weak assumptions. We apply our results to the analysis of iterations for 

nonlinear equations and to the composition of such iterations. In particular our re- 

sults can be used to study one-point iterations with memory and iterations for solving 

nonlinear equations on parallel computers. An extended discussion of applications, 

including use of the power method to calculate the spectral radius, may be found in 

Feldstein and Traub [74]. 

Let 1111 denote any convenient vector norm or the induced matrix norm. 

When the following limits exist, define the root order by 

R(yn) = lim I1yn11I"n 
n-*oo 

and the quotient order by 

I1yn+ 1 ll 
Q(yn) = im 

n - oo IlYn1i 

Clearly, if the quotient order exists, then so does the root order (though not con- 
versely), and they are equal. 

Received February 21, 1975; revised August 26, 1975 and May 27, 1976. 
AMS (MOS) subject classifications (1970). Primary 39A10, 40A05, 65F15, 15A18, 

65H05, 68A20. 
*Part of the first author's work was done while in residence at the Naval Research 

Laboratory, Washington, D. C. and at ICASE, NASA-Langley Research Center under NASA Grant 
NGR 47-102-001. Part of the second author's work was performed under the auspices of the 
U. S. Atomic Energy Commission while consulting at Lawrence Livermore Laboratory. The 
second author was supported in part by the National Science Foundation under Grant GJ 32111 
and the Office of Naval Research under Contract N0014-67-A-0314-0010, NR 044-422. 

Copyright 1. 977, American Mathematical Society 

180 



ASYMPTOTIC BEHAVIOR OF VECTOR RECURRENCES 181 

Let U be a nonsingular matrix such that M = U-1JU, where J is the direct 
sum of K Jordan block matrices, J = J1 ? J20 *? . JK. Let Xk be the eigen- 
value corresponding to 4k and let the dimension of 4k be Dk. Let the K Jordan blocks 
of J be arranged so that 

x 1 l > 1 X2 1 > ***> I XK 1, and 

IXl =IX21 = = IXLI impliesD1 >D2 > *DL. 

J1 J2'. ' JL are called the principal Jordan blocks of M. Denote D = D1, and 
X = X1. Thus 1XI is the spectral radius of M, which we shall sometimes write as X(M). 

In order to draw the conclusions which follow we must assume that the initial 
vector yo does not lie in a certain subspace. Since the statement of this hypothesis is 
given in Eq. (16) and involves certain quantities not defined until Section 5, we find it 
convenient to label this as the "subspace hypothesis". We now state our main result; 
the proof is given in Section 5. 

THEOREM 1. Assume X(M) > 1 and 

1. Ilw11 <n w < ?? for all n, 
2. "Subspace hypothesis". 

Then 

(i) R(yn) = X(M). 
If, in addition, 

3. Dk <D for 2 ?< k L, when lXkl = Xl with Xk # X, then 
(ii) Q(yn) = X(M). 
Herzberger [74] has independently analyzed the order of (1). However, his 

assumptions are far more restrictive than ours. Of course there are important appli- 
cations of (1) where Herzberger's conditions hold. In our terminology Herzberger's 
main result may be stated as 

THEOREM 1'. Assume 

1. limn--oown = w< oo 

2. X(M)> 1, 
3. M is a nonnegative matrix, 
4. M is primitive (see Varga [62]). 

Then 

R(yn) = Q(yn) = X(M). 

Because of his strong conditions, Herzberger does not need to distinguish be- 
tween the existence of root and quotient order. Herzberger does not include a sub- 
space hypothesis although we believe one to be necessary. 

The example Yn+ 1 = Xyn + w, X < 1, w * 0, shows that Theorem 1 need 
not hold if X < 1. However the conclusions of Theorem 1 hold for all values of X if 
we restrict ourselves to homogeneous recurrences, wn = 0 for all n. In this case (1) 
becomes Yn+ 1 = Myn+ 1, the Yn are the iterates of the power method and we have 

THEOREM 2. Assume 

1. wn = Oforalln. 
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If X(M)= O, 

(i) R(yn) = X(M). 
If X(M) > O and if 

(2) "Homogeneous subspace hypothesis", then 

(ii) R (yn) = X (M). 
If, in addition, 

3. Dk <Dfor2 ? k ? L,when lXkl= X with Xk = X, then 

(iii) Q(yn) = X(M). 
Observe that if X(M) = 0, then no subspace condition is required. If X(M) > 0, 

then the homogeneous subspace hypothesis is the classical condition that the initial 
vector yo may not be an eigenvector corresponding to a subdominant eigenvalue. In 
the notation of this paper the homogeneous subspace hypothesis is (16) with f = 0 and 
6 = 1 for all X (even 1XI = 1). 

We summarize the rest of this paper. Applications are considered in the next 

two sections while the proof of the main theorem is deferred until the last two sections. 

Readers interested primarily in the proof should turn first to Section 4. Section 2 dis- 
cusses the matrix representation of nonlinear iteration and utilizes the representation in 
the analysis of parallel algorithms. New results on the order and efficiency of composite 
iteration are analyzed in Section 3. The main result is proved in Section 4. Proofs of 
estimates needed in the proof of the main theorem may be of independent interest and 
appear in Section 5. 

2. Matrix Representation of Nonlinear Iteration: Applications to Iteration 

With Memory and to Parallel Algorithms. Let a sequence of vectors {xn } be gen- 
erated by the vector-valued function up: RN - RN and 

(2) Xn+ 1 =iP(xn)- 

Assume that at least one component of xn converges to at least one component of the 

constant vector a. Let the components of xn , Yn and a be labelled xnJ, Yn j, and 
a. Let 

Ynf= log IXJ - ajI 

Then IIynII -?? as n -- oo. For many important problems, the vectors Yn satisfy (1). 

Examples are given below. We then call (1) the logarithmic error equation (or simply 
the error equation) for the sequence {xn } and call M the matrix representation of the 
iteration function p. 

If (1) is the error equation of (2), we define the root order of p as 

R(ep) = R(yn) 

and the quotient order of sp as 

Q(P) = Q(yn). 

The important idea of matrix representation of nonlinear iteration is due to 
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Rice [71]. His matrix representation seems unnecessarily complicated. Rice's anal- 
ysis does not distinguish between root and quotient order. 

The following example shows applications of this formulation. 
Example 1. Assume that a is a zero of a scalar function g. One-point iterations 

with memory are of the form (Traub [64], Feldstein and Firestone [67] and [69], 
Hindmarsh [72]) 

(3) Zn = + p(zAn Zn-1 . . . , Zn-N+1) 

with errors satisfying 

b ~~~bN 
(4) Zn +1 -a = Cn +1(Zn -a) (zn-N + 1 -a) 

where the bi are nonnegative integers. 
Equation (3) may be written as 

(Xn+1,1 = P(xn, .. * Xn,N)X 
(5) 

(Xn +l1,j =Xn, j- 1 for j = 2, 3, . ..,N. 
Let all components of a be a. One easily shows that the error Yn+ 1 satisfies 

Yn + =Myn +wn+1 where 

b1 b2 b**1 bN logcon+l \1 

1 0 0 

(6) 
0 

0 0 1 0 0 

Observe that M is the companion matrix for the indicial polynomial of the linear re- 
currence. 

Conclusions (i) and (ii) of Theorem 1 hold for all Hermite interpolatory iteration 
functions. The quotient order was first established by Traub [64] for the equal in- 
formation case b = = ** = bN and by Feldstein and Firestone [67] for arbitrary 
nonnegative integers bl, ... , bN using recurrence equation techniques. 

A number of authors (Feldstein and Firestone [67], Shedler [67], Miranker [69] 
and Rice [71]) have studied the use of parallel computers to calculate a zero of a 
scalar function. Most of the proposed iterations have the form 

Xn + 1 , i = li(xnl, 1 * * *, Xn N) for i = 1, ... ., N. 

where N is the number of processors. Assume the errors satisfy 

N 
Xn+1 ,i = n i II (Xnj j 

i= 1 
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Then the error equation (1) holds with 

Wn = (log Icn,1, . . . , log ICnNli) 

and with the elements of M given by (minj). See Examples 3 and 5 of Feldstein and 
Traub [74] for more details. 

3. Composition and Efficiency. We turn to the order of a composite iteration. 
Suppose that 

X(l) = {p(x1l)), X2)1 = sp2(X(2)). 

Then the composite iteration is Xi = o ?p, where A: RN - RN, and the com- 
posite iteration sequence {xn } is defined by 

n + 1 =i(Xn) P2 (OP (Xn)) 

Let p1 and up2 have characteristic matrices M1 and M2 with logarithmic error equations 

Y(1) = M ly ) + wl) y(2) = M2y(2) + W(2) n~~l n n + 1 n~~l M~~yn 
n+l1 

Let M = M2M1 and wn+ 1 =M M2wn+)l + W(2) Then ; has the error equation LetM =M2M ad W+ 1= 2wn+ 1 n + 1 

Yn+1 :=Myn+ wn + ., See Example 6 of Feldstein and Traub [74] for specific rep- 
resentations of composite algorithms. 

In the following theorem the use of D, Dk, X, Xk and the subspace hypotheses 
all refer to the matrix M = M2M1. We state the main Composition Theorem. Its 
proof is an immediate consequence of Theorem 1. 

THEOREM 3. Assume 

1. I lw,, + 1 1 1 S< w < ?? for all n, 
2. "Subspace Hypothesis", 
3. X(M2M1)>1. 

Then 

R(p2 ?o Ep1) = X(M2M1). 

If, in addition, 
4. Dk< Dfor2 Sk L,when lXI = Xl with Xk #X, then 

Q((2? = X(M2Ml). 

Observe that a composite algorithm may have an order of convergence either less 
than, equal to, or greater than the product of the orders of the individual algorithms. 
See Example 7 of Feldstein and Traub [74] for details. It is easy to see that 

COROLLARY 1. Order is invariant under commuting of two compositions. 
Observe that Corollary 1 is false for three compositions, because X(M1M2M3) 

need not equal X(M3M2M1). 
From Corollary 1, order multiplies under self-composition. Another important 

case for which order multiplies under composition is when ep is a scalar one-point 
iteration (Traub [64, Chapter 2]). In general, order does not multiply under 
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composition even in the case of scalar <. This was first shown by Hindmarsh [72] who 
used difference equation techniques in his analysis, and by Rice [71] using matrix rep- 
resentation techniques. 

To compare iterations it is useful to have the concept of an efficiency measure. 
See Kung and Traub [74] and Traub and Woiniakowski [76]. Let c(p) > 0 be some 
"cost" associated with computing xn +1 from xn . The efficiency index of p is defined, 
for p> 1, by 

e(p) = (logp(ep))/c(p) 

We wish to compare the efficiency of the composite iteration p2 o eP1 with the 
efficiencies of p1 and p2. In the following discussion we do not distinguish between 
root and quotient order; both are represented by p(p). We denote pi = p(ep), pi1 = 

p(ep1 o spy), cij 
= c(ep1 o ?p), e, X = e(ep1 o spy). We assume that c1,2 = c2,1- Then by 

Corollary 1, el 2 = e2 1- It is reasonable to assume that c2,1 ? cl + c2. In the 

following theorem assume that p1 = X(M1), P2 = X(M2), and P2,1 = X(M2M1). The 
hypotheses of Theorems 1 and 3 are sufficient to guarantee this. We omit the proof 
which is straightforward. 

THEOREM 4. 1. Let c2,1 = C1 + C2. 

(a) If X(M2M1) > X(M2)X(M1), then min(e1, e2) < e21. 
(b) If X(M2M1) = X(M2)X(M1), then min(el, e2) < e2,1 < max(el, e2). 

(c) If X(M2M1) < X(M2)X(M1), then e2,1 < max(el, e2). 

2. On the other hand,let c2,1 <c +?C2. 

If X(M2M1) > X(M2)X(M1), then min(e1, e2) < e21. 
It is possible that the efficiency of a composite iteration may be greater than the 

maximum efficiencies of the component iterations, i.e., 

(7a) e2,1 >max(ele2). 

In view of Theorem 4 this can only happen if either of the following conditions holds: 

(7b) c2,1 <cl +c2 

or 

(7c) X(M2M1) > X(M2) * X(M1)- 

Example 9 of Feldstein and Traub [74] shows a situation where (7a, b, c) all hold. 
We can easily calculate sufficient conditions for (7a) to hold. For example, 

assume that c2,1 = c1 + c2 and that (7c) holds. Let 

n = log X(M2M1) - log X(M2) - log X(M1) > 0. 

Then e2,1 > max(el, e2) if 

q > cl(e2 -el) for e2 > el, or 1 > c2(e1 - e2) for e2 < el. 

In general we are interested in iterations such that i7 and p = c(epl) + c(ep2) - 

c(ep2 ? upl) are positive and as large as possible. How to do this is an open question. 
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4. Proof of The Main Theorem. The proof of Theorem 1 uses certain estimates 
(Lemmas 1 and 2, below) on the growth as n -oo of each block J1n for 1 ? k ? K. 
Since the proofs of these lemmas are rather long and since these lemmas may be of in- 
dependent interest, we defer the proofs until Section 5 and confine ourselves here to 
a statement of the results needed for the proof of Theorem 1. We shall start from Eq. 
(1), written here for notational convenience with primes as 

y' = My' ? w' 

Write M in the Jordan form M = U-1JU. Let 

y~Uy' and Yn =Un Wn wn = Uwn. 

Then 

Yn+1 =Jyn ? wn +1 

Let C(a, b) denote a binomial coefficient. Let Wn k be that portion of the vector wn 
which is associated with the Jordan block Jk. Let 

(0 if IXI = 1, 

(8) 6 = 

1 otherwise, 

(9) Qn,k = Jk,/(XnC(n, D - 6)), 

n 
(10) Sn k = Jk -i, kW * 

i=0 

When the limit exists (see Eqs. (28) and (30)), define 

fk(z) = lim n-D i C(n -i, D -1) 

If IIwnII < w < oo for all n, then we will show (30) that this limit exists and indeed 
that fk(z) is analytic for Iz I ? 1X1 1. 

For 1 < k ? K let Wk be the Dk x Dk matrix having ones on the superdiagonal 
and zeros elsewhere. Then Wk = 0 for j > Dk and WD k is a matrix with a one in W k D-_1 
the upper right-hand corner and zeros elsewhere. If Dk = 1, define Wk = O. Wk 

= 1. Usually the subscript of Wk will be clear from context, and we will simply write 
W. The symbol O(n'1) will denote a scalar, a vector, or a matrix (according to con- 
text) each of whose entries is bounded in absolute value by n-1 times some non- 
negative constant. 

LEMMA 1. Let X(M) > 0. The following hold for 1 ? k ? K: 
1. If IXkI < 1XI, then Qnk = O(n1). 

2. If Dk < D - 1, then Qn, k = O(n ). 
3. If Dk = D and I Xk XI, then 

Qn,k = 6(Xk/X)nkXDWDl ? O(n1) 
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LEMMA 2. Let X(M) > 1 and llwnll. ? w <oo for all n. The following hold for 
1 <k?K: 

1. If IXkI < 1XI, then snk/(Xn C(n, D - 6)) = O(n-'). 
2. If Dk SD - 1, then sn, k/(XnC(n,D - 6)) = O(n-1). 
3. If IXkI = 1XI and Dk = D, then 

sn,/(k1 C(n, D - 6)) = (XK/ )kl -DWDlfk(a-1) + O(n-), 

rim ISflk/G(C(n,D - 6))II = Ik 11DIIWD-lfk(X-1)1. 
n -*oo 

Furthermore, fk(z) is analytic for I z I < I - 1 1. 
Remark. In part 3 of Lemmas 1 and 2 notice that limn-oo(Xk/X)n exists if and 

only if Xk = X. Hence the following limit results hold if and only if Xk = X: 

lim Q~ k = tXl-DWD-1 lim S fk/(XnC(n, D -6)) = XkDWD k( l) 
nt-oo n--oo 

This point is the important key to hypothesis 3 which distinguishes between the root 
and quotient order results of Theorems 1 and 2, because in order for the quotient 
order result to hold, the limits above must hold. See also Eq. (17). n 

We now prove Theorem 1. Start from (1) in Jordan form 

(11) ~~~~~Yn+ 1 Jyn + Wn+ 1 

Let Yn,k and Wnk be the portions of the vectors Yn and wn corresponding to the 
Jordan block Jk. It may be easily verified from Eqs. (10) and (11) that 

(12) Yn,k = JkYo,k + Snak, 

where Snk was given by (10). Let 

(13) Vnk 
= 

Ynk/(X C(n, D - 6)). 

Substitute (12) and (9) into (13). Then 

(14) 'n k = Qn kYO, k + Sn,k/(X C(n, D - 6)). 

Since IIw' 11 is bounded by hypothesis and U is a nonsingular matrix, 11w1 1I is also 
bounded. Lemmas 1 and 2 may be applied. Parts 1 and 2 of the lemmas clearly show 
that we need to consider only those components for which I Xk I = I XI and Dk = D 
both hold, for otherwise Vnk ?-- 0. Apply part 3 of Lemmas 1 and 2 to those com- 
ponents to obtain 

(15) Vn k = (Xk/)nkDWkD 1 {6YOk + fk(Xk )} ? O(n'). 

We are now ready to define the subspace hypothesis which is hypothesis 2 in 
Theorems 1, 2, and 3: 

(16) WkD 1 {1Y0,k + fk(Xkl)} * 0 for some k such that IXkI = IXI and Dk = D. 

(Recall that YOk and fk in (16) come from the Jordan transform of (1). Recall also 
that, in Theorem 2, fk = 0 and 6 = 1, always.) Note (16) implies that the full vector 
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Vn has at least one component which, as n oo is bounded away from zero (recall 
that IXkI = 1X1 # 0). By (13), the same is true for the vector Yn and thus also for yn. 

Since 6 = 0 when X(M) = 1, the subspace hypothesis becomes 

WkD fk(x1) 0 0 

for some k such that I Xk I = 1 and Dk = D. There are many nontrivial situations that 

yield fk(X 1) = 0. In such cases Theorem 1 cannot be applied although R (yn) = 1 and 

Q(yn) = 1 may still hold. We shall not pursue this in the present paper. 
To establish the root order result, take norms in (15). 

II Vnk i j Xj1DIIWIID1 {6 IIYOkII llfk(Xkl)ll} + O(n1). 

Thus vn is bounded in norm. Since C(n, D 56)/nD - 1/(D - 6)! as n oo, 

then 

= u = XnnD-6' 

for some vector vn which is bounded in norm and which by application of the sub- 

space hypotheses is bounded away from zero for n sufficiently large. Therefore, 

IIIIy " 11n = IXjn(D-6)/njIjV; 11/n -1 lXi as n oo. 

Hence R(y;) = X(M). 

To establish the quotient order result, we need to consider only k = 1 (by the 

hypotheses of Theorem 1 and by Lemmas 1 and 2). Since X1 = X, then Eq. (15) be- 

comes (see the Remark following Lemma 2) 

(17) vn,1 = X1DWD1 {ayo01 + fl(X-')} + O(n-1). 

An application of the subspace hypothesis shows that vn 1 has a nonzero limit as 
-- - oo. Thus there is some vector vn, with a nonzero limit, for which 

yn = XnnD6vn, 

IlYn+1II In + 1\D-8 I ~ n Vn)I 

nII = II n ) + asIn- 

Hence Q(y;) = X(M) which completes the proof of Theorem 1. 
The proof of Theorem 2 is a minor modification of the proof of Theorem 1, 

with sn, k = 0, and is omitted. 

5. Proofs of the Lemmas. The statements of Lemmas 1 and 2 were given in 

Section 4 and will not be repreated here. Fix k for 1 ? k ? K. Let Xk # 0, since 
the results are trivial otherwise. Recall that 6 = 0 if 1Xi = 1 and 6 = 1 otherwise. 
Let n > Dk. Then 

Dk-1 

n= (XI + W)n = E Xn7mC(n, m)Wm, 
m=O 
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Dk-1 

(18) Jkn = XnkCn, D - ) X- Q~ Cn, Dm) Wm 
m=O CQn, D -6) 

Proof of Lemma 1. Substituting (18) into (9) yields 

(k\ DCn, m) Qnk 
= )Xkm Cn, m) wm 

m=O 0,D6 

Since 

C(n, m)/C(n, D - 6) = 0(nm-D+6) 0(nDk-D) for O m D -1, 

then 

IIQn,kII < |~k/X Ino(n Dk-D) 

1. If I|kI < XI, then Ik/XIn0(n ) n= 0QF1). Thus Qn, k = O(n 1), as 

desired. 
2. If Dk D - 1, then (n DkD ) 6 0(n-1) while IX /XIn 1. Thus Qnk 

00n-1 ), as desired. 
3. If Dk = D and IXk= XI, then 

Ck) X )m C(n, m) Wm O(n-1) 
X k Q~Cn, D -65) 

by the proof of part 2 above. Hence Qnk is dominated by the term m = Dk - 1; 
that is, 

Qnk = 
XI 

-\k D n(, D - 1) WD-I + 0(n-F). k X k= Cn, D-65) 

Since 6 = 0 or 6 = 1, then 

C(n, D - 1)/C(n, D - 6) = 6 + 0(n-Q). 

Therefore 

Qn,k = 6(Xk/X)nXk DWD1 + 0(n-1), 

which completes the proof of Lemma 1. 
Proof of Lemma 2. Write 

n 

(19) tn,k = Z Jkwn-i,k. 
i=D k 

Recall (10) and apply IiwnII < w. Hence 
Dk-1 

IISn,k tn,kII 6 W X IIJkIi =0(l). 
i= 0 

Hence 

lim IISn, k - tn kIII/(CnC(n, D - 6)) = 0. 
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Thus, it suffices to consider tnk instead of Sn k. Denote 

(20) qn,k = tn,k/(X C(n, D -6)). 

Substitute (18) with n = i and (19) into (20). Interchange the order of summation to 
obtain 

Dk-l ~ n C, 

(21) m0 Wm1 Xi7m Xn CW)n-i k~ 
(21) , k = El W fl E Xk ) C(n, D-6) 

1. Suppose that IXkI < IXI Consider Tk > 1 such that IXkI < TrkI 6 XI. (Tk 

will be picked later.) Let bnk denote the vector 

(22) bn E XkM Wm El COi, m)() Tk nWn (22) D~k ' 'ri Wni, k' 
m=O i=Dk k 

Then Eq. (21) may be written as 

(23) qn,k = bnk/C(n, D -6). 

Consider the functions iJn(Z) = z2nUozi and 4(z) = Yi z. Since limn- n(z) 
4(z) is analytic for Iz I < 1, then limn-+oonm)(z) = O,(m)(Z) is also analytic, and thus 
also absolutely convergent for IZ I < 1 (superscript denotes differentiation). Thus 

I4,(m)(z)j < 4(m)(IzI) for IzI < 1. 

It is not hard to verify that 
n I 

(24) ZCi M)Z' m! - 
' 

(Z) 

Since 0 < m <mDk - 1, IXk/TkI < 1, TkIin <1I for Dk 6 i 6 n, and *IWn kiIkII < W, 
then the norm of (22) yields 

Dk-l 

(2 5) l l n kI < W I |kI | M||! Qm)(|k II /1| k |)b . 

Clearly, b = 0(1). Take norms in (23) to obtain 

IIqnlkIIK.-b + /n, D - 5. 

If IXI > 1, choose Tk < IXI; in this case qnk = 0(n-1). If IXI = 1, then 6 = 0; in 

this case 1 /C(n, D - 6) = 0(n-1) and thus qn k = O(n-f). This establishes part 1 

of Lemma 2. 
2. Suppose that 1 6 Dk 6 D - 1. In view of part 1, it is only necessary to 

prove part 2 when IXkI = X1. Note that 0? m ?Dk - 1 6D -2. If XI = 1, then 

n C mC(i,m) < C(i, m) = C(n + 1, m + 1) 
i=Dk C(nD - 6) i=m C(n,D) C(n,D) 

> O(nm 1t-D) <h n(n 
If IXI >1, then 
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=D C(n,D- 6) C(n, D - 2) (I + IXI + IXI +? i=k 

Thus, for I XI 1 and for 0 m SD -2, 

C(i ) (26) Z n, m ). IXi = 0QFn) 
i=D C(nD-6) 

Take norms in (21), apply JXkI = IXI, IIWn-ikII S w, and (26) to obtain IIqn k1' S 
0(n-1). This establishes part 2 of Lemma 2. 

3. Suppose that I Xk I = I XI and Dk = D. Then (21) becomes 

m-? iD C(n, D 6) 
=n(kk) , Xk i=D, )k Qn D - 5) ni k. 

X-m m X- CQn - i, m) 

Zm 
kW i=O 

We may write 

/knD-1 

(27) qnk k) 
m=0 

where fkm ,n(Z) is the vector polynomial 

(28) fk,m,n(Z) ZEZ Ci,k 
i=O CQn,D 

- 
)Wk 

Hence 

(29) Ifkmn(Z)llW iE=D C(n, D-) 

Let z = -1. Since IXkI = IXI > 1, we may apply (26) to (29) and obtain 

llfkmn(Xk-)1 = 0(n-l) for 0 Sm SD -2. 

Thus qn ,k in (27) is dominated by the term with m = D - 1. Evaluate (29) with 
m =D- 1 for IzI ? IX1-. If XI> 1, then 6 = 1 and 

IIfk,D-lfn(z)II 6 w C( D ) 1 i-n 
CQn, D- 1)Z =XI 

S w(l + ?IX-1 + IX?-2 + WIXI 
IXI1 

On the other hand if XI = 1, then 6 = 0 and 

If,D-1,n(z)II S w | , C(i,D-1)- l j/(n, D) 
i=D-1 

= w{C(n + 1,D) - 1}/C(n,D) Sw(n + 1)/(n + 1 -D)= 0(1). 

Thus fkD-1 ,n(z) is bounded in norm uniformly in n for Iz I S IX-1 1. Hence 
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is analytic for Iz I I X-1I. (In fact fk(z) is analytic for IzI < 1 when XI = 1 and for 

IzI < 1 when X I> 1.) Equation (27) may be written as 

(qk/X)nX-DWD-1fk(X-1) ?O r) qnsk =(ALXk k WDlk(\ + 0(n-1). 

To complete the proof, take norms, recall that JXk1 = 1X1, and take the limit as n 
00* E 
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