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Asymptotic Behavior of Vector Recurrences
with Applications

By Alan Feldstein and J. F. Traub*

Abstract. The behavior of the vector recurrence y, , = My, + W, is stud-
ied under very weak assumptions. Let A(M) denote the spectral radius of M and
let A(M) > 1. Then if the w, are bounded in norm and a certain subspace hy-
pothesis holds, the root order of the y, is shown to be A(M). If one additional
hypothesis on the dimension of the principal Jordan blocks of M holds, then the
quotient order of the y,, is also A(M). The behavior of the homogeneous re-
currence is studied for all values of A(M).

These results are applied to the analysis of

(1) Nonlinear iteration with application to iteration with memory and to
parallel iteration algorithms.

(2) Order and efficiency of composite iteration.

1. Introduction. We study the behavior of the vector recurrence
(1) Yn+1 =Myn +wn+1

under very weak assumptions. We apply our results to the analysis of iterations for
nonlinear equations and to the composition of such iterations. In particular our re-
sults can be used to study one-point iterations with memory and iterations for solving
nonlinear equations on parallel computers. An extended discussion of applications,
including use of the power method to calculate the spectral radius, may be found in
Feldstein and Traub [74].

Let ||*]| denote any convenient vector norm or the induced matrix norm.
When the following limits exist, define the root order by

R(y,) = lim |ly,II*/?
n—»oo

and the quotient order by

1y, 4]
0@y,) = lim —

noo  |[Vyll

Clearly, if the quotient order exists, then so does the root order (though not con-
versely), and they are equal.
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Let U be a nonsingular matrix such that M = U~1JU, where J is the direct
sum of K Jordan block matrices,J =J, @ J, ® -+ -+ ® Ji. Let A\, be the eigen-
value corresponding to J; and let the dimension of J, be D,. Let the K Jordan blocks
of J be arranged so that

M=y =« >[N, and

\l=gl=+-+=IN| impliesD, >D,>-+->D,.

JysJy, o ., are called the principal Jordan blocks of M. Denote D = D,,and
A =A;. Thus || is the spectral radius of M, which we shall sometimes write as AM).

In order to draw the conclusions which follow we must assume that the initial
vector y, does not lie in a certain subspace. Since the statement of this hypothesis is
given in Eq. (16) and involves certain quantities not defined until Section 5, we find it
convenient to label this as the “subspace hypothesis”. We now state our main result;
the proof is given in Section 5.

THEOREM 1. Assume A(M) > 1 and

L |lw,ll Sw <o forall n,

2. “Subspace hypothesis”.

Then

Q) R(y,) = \(M).
If, in addition,

3. D, <D for2 <k < L,when |\, | = |\ with \, # A, then

@) Q) = ().

Herzberger [74] has independently analyzed the order of (1). However, his
assumptions are far more restrictive than ours. Of course there are important appli-
cations of (1) where Herzberger’s conditions hold. In our terminology Herzberger’s
main result may be stated as

THEOREM 1'.  Assume

1. lim,_, w, =w <o,

2. \(M) > 1,

3. M is a nonnegative matrix,

4. M is primitive (see Varga [62]).

Then

R(y,) = Q@y,) = \(M).

Because of his strong conditions, Herzberger does not need to distinguish be-
tween the existence of root and quotient order. Herzberger does not include a sub-
space hypothesis although we believe one to be necessary.

The example y, . ; = Ay, + w, A <1, w # 0, shows that Theorem 1 need
not hold if A < 1. However the conclusions of Theorem 1 hold for all values of A if
we restrict ourselves to homogeneous recurrences, w,, = 0 for all n. In this case (1)
becomesy, ., = My, ,,, the y, are the iterates of the power method and we have

THEOREM 2. Assume

1. w, =0 forall n.
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Ifx@) =0,
@ R(y,) = \(1).

If A\(M)> 0and if
(2) “Homogeneous subspace hypothesis”, then
(i) R(,) = \@).

If, in addition,

3. D, <D for2 <k <L,when |\ | = Xwith \;, =\, then

(iii) Q(y,) = A@Y).

Observe that if A(M) = 0, then no subspace condition is required. If A(M)> 0,
then the homogeneous subspace hypothesis is the classical condition that the initial
vector y, may not be an eigenvector corresponding to a subdominant eigenvalue. In
the notation of this paper the homogeneous subspace hypothesis is (16) with f = 0 and
& =1 for all X (even |A\| = 1).

We summarize the rest of this paper. Applications are considered in the next
two sections while the proof of the main theorem is deferred until the last two sections.
Readers interested primarily in the proof should turn first to Section 4. Section 2 dis-
cusses the matrix representation of nonlinear iteration and utilizes the representation in
the analysis of parallel algorithms. New results on the order and efficiency of composite
iteration are analyzed in Section 3. The main result is proved in Section 4. Proofs of
estimates needed in the proof of the main theorem may be of independent interest and
appear in Section S.

2. Matrix Representation of Nonlinear Iteration: Applications to Iteration
With Memory and to Parallel Algorithms. Let a sequence of vectors {X,} be gen-
erated by the vector-valued function ¢: RN — R and

(2) xn+1 = ‘p(xn)'

Assume that at least one component of X, converges to at least one component of the
constant vector a. Let the components of x,, y,,, and a be labelled x,, g Ynj and
;. Let

Yn,j = 108 1%y ; = ogl.

Then ||y, |l — o as n — . For many important problems, the vectors y,, satisfy (1).
Examples are given below. We then call (1) the logarithmic error equation (or simply
the error equation) for the sequence {x,} and call M the matrix representation of the
iteration function ¢.

If (1) is the error equation of (2), we define the root order of ¢ as

R(p) = R(y,)
and the quotient order of ¢ as

Q@) = 0(y,).

The important idea of matrix representation of nonlinear iteration is due to
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Rice [71]. His matrix representation seems unnecessarily complicated. Rice’s anal-
ysis does not distinguish between root and quotient order.

The following example shows applications of this formulation.

Example 1. Assume that « is a zero of a scalar function g. One-point iterations
with memory are of the form (Traub [64], Feldstein and Firestone [67] and [69],
Hindmarsh [72])

(3) Zn+l = tp(Zn, Zp—1s et ’Zn—N+l)

with errors satisfying

b, by
Q) Zpp1 == €42, m0) "t Gy T
where the b; are nonnegative integers.
Equation (3) may be written as
Xnt1,0 = PEp 15 -0, X, N,
(%
Xpt1,j=%p,j—q forj=2,3,...,N.

Let all components of & be a. One easily shows that the error Yn 41 satisfies

Yo+1 =My, +w,,, where

(b1 by - - by, by logle, 441
1 0 0
6
© uol 0 1 0
- ’ B Wpt1 =
0 o0 1 0 0

Observe that M is the companion matrix for the indicial polynomial of the linear re-
currence.

Conclusions (i) and (ii) of Theorem 1 hold for all Hermite interpolatory iteration
functions. The quotient order was first established by Traub [64] for the equal in-
formation case b, = b, = - - + = by and by Feldstein and Firestone [67] for arbitrary
nonnegative integers b, . . . , by using recurrence equation techniques.

A number of authors (Feldstein and Firestone [67], Shedler [67], Miranker [69]
and Rice [71]) have studied the use of parallel computers to calculate a zero of a
scalar function. Most of the proposed iterations have the form

Xpi1,i = OXp 155Xy y) fori=1,...,N,

where N is the number of processors. Assume the errors satisfy

N
x —a=c,; [Tx,;-&)"%
n+1,i n,i n,j ’
j=1
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Then the error equation (1) holds with
w, = (logle, 4I, ..., loglcn,NI)T

and with the elements of M given by (m,.’ j). See Examples 3 and 5 of Feldstein and
Traub [74] for more details.

3. Composition and Efficiency. We turn to the order of a composite iteration.
Suppose that

xle+) 1 =0, (x), x$,2+) 1= o).

Then the composite iteration is Y = ¢, o ¢, where ¥: RY — RY and the com-
posite iteration sequence {x,} is defined by

Xpr1 = V) = 03(01(x,)).
Let ¢, and ¢, have characteristic matrices M, and M, with logarithmic error equations

Yoty =My Wl v = Myy® +w®),
LetM=MM; and w,,, = Mzwf,l_zl + wf,2+)l. Then ¢ has the error equation
Yn+1 =My, + w,,,. See Example 6 of Feldstein and Traub [74] for specific rep-
resentations of composite algorithms.

In the following theorem the use of D, D, , X, A, and the subspace hypotheses
all refer to the matrix M = M,M,. We state the main Composition Theorem. Its
proof is an immediate consequence of Theorem 1.

THEOREM 3. Assume

Lo lw, 1l Sw < e forall n,

2. “Subspace Hypothesis”,

3. AMM ) > 1.

Then
R(p, © 9)) = ANM,M,).

If, in addition,
4. D, <D for 2 <k <L, when |\;| = |\ with \;, # X, then

0(p; o ¢;) = AM,M,).

Observe that a composite algorithm may have an order of convergence either less
than, equal to, or greater than the product of the orders of the individual algorithms.
See Example 7 of Feldstein and Traub [74] for details. It is easy to see that

COROLLARY 1. Order is invariant under commuting of two compositions.

Observe that Corollary 1 is false for three compositions, because X\ (M, M, M)
need not equal A(M;M,M,).

From Corollary 1, order multiplies under self-composition. Another important
case for which order multiplies under composition is when g is a scalar one-point
iteration (Traub [64, Chapter 2]). In general, order does not multiply under
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composition even in the case of scalar ¢. This was first shown by Hindmarsh [72] who
used difference equation techniques in his analysis, and by Rice [71] using matrix rep-
resentation techniques.

To compare iterations it is useful to have the concept of an efficiency measure.
See Kung and Traub [74] and Traub and WozZniakowski [76]. Let c(¢) > 0 be some
“cost” associated with computing x,,, ; from x,,. The efficiency index of ¢ is defined,
for p > 1, by

e(p) = (logp(v))/c(v)

We wish to compare the efficiency of the composite iteration ¢, o ¢, with the
efficiencies of ¢, and ¢,. In the following discussion we do not distinguish between
root and quotient order; both are represented by p(p). We denote p; = p(y)), pij=
p(@;° ¢),cij=c(y;° ¢), e ;=e(p; o). Weassume that ¢, , =c, ;. Then by
Corollary 1, e, , = e, ;. It is reasonable to assume that ¢, ; <c¢; +¢,. In the
following theorem assume that p; = A(M,), p, = A(M,;), and p, ; = N(M,M,). The
hypotheses of Theorems 1 and 3 are sufficient to guarantee this. We omit the proof
which is straightforward.

THEOREM 4. 1. Letc, ; =c¢; +c,.

(@) If NMuMy) > NM)INM,), then min(e,, e;) <ej ;.

(b) If \(M,M,) = N(My)N(M,), then min(e,, e,) < €y,1 Smax(ey, ;).

© If MMMy ) <ANMHAM,), then e, ; < max(e,, e,).

2. On the other hand, let ¢, | <c¢, + c,.

If \M,M ) > NMy)N(M,), then min(ey, ;) < ey ;.

It is possible that the efficiency of a composite iteration may be greater than the
maximum efficiencies of the component iterations, i..,

(7a) e, 1 > max(ey, e,).

In view of Theorem 4 this can only happen if either of the following conditions holds:

(7b) 1 <c to
or
(7¢) AMM)) > AMy) - A(M ).

Example 9 of Feldstein and Traub [74] shows a situation where (7a, b, ¢) all hold.
We can easily calculate sufficient conditions for (7a) to hold. For example,
assume that ¢, ; = ¢; + ¢, and that (7¢) holds. Let

n = logA(MyM,) — log\(M,) — logA(M,) > 0.
Then e, ; > max(e,, ,) if
n>c (e, —e;) fore, >e, or n>cy(e; —e) fore, <e.

In general we are interested in iterations such that n and u = c(p,) + c(p,) —
c(p, © ;) are positive and as large as possible. How to do this is an open question.
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4. Proof of The Main Theorem. The proof of Theorem 1 uses certain estimates
(Lemmas 1 and 2, below) on the growth as n — oo of each block J; for 1 <k <K.
Since the proofs of these lemmas are rather long and since these lemmas may be of in-
dependent interest, we defer the proofs until Section 5 and confine ourselves here to
a statement of the results needed for the proof of Theorem 1. We shall start from Eq.
(1), written here for notational convenience with primes as

’

Y41 =My, + Wnt1-
Write M in the Jordan form M = U~ 1JU. Let
y, =Uy, and w, =Uw,.
Then
Yn+1 =9 T Wy

Let C(a, b) denote a binomial coefficient. Let W, i be that portion of the vector w,
which is associated with the Jordan block J,. Let

0 if Al =1,
(8) 5={

1 otherwise,

(9) Qn,k = JI?/QnC(n, D - 5))a
(10) Sn,k = D Jlgwn—i,k‘ .
i=0

When the limit exists (see Egs. (28) and (30)), define

n—D —3 _
fk(z) = lim Z zi Cl”___’_’_l_)____l) w

n—>oo j=0Q C(n,D _6) ik

If |lw, || <w < o for all n, then we will show (30) that this limit exists and indeed
that f,(z) is analytic for |z| < A7)

For 1 <k <K let W, be the D, x D, matrix lglvi_nlg ones on the superdiagonal
and zeros elsewhere. Then W,{; =0 forj>D, and W, k" is a matrix with a one in
the upper right-hand corner and zeros elsewhere. If D, = 1, define W, = 0, W,f) k=
= 1. Usually the subscript of W, will be clear from context, and we will simply write
W. The symbol O(n~!) will denote a scalar, a vector, or a matrix (according to con-
text) each of whose entries is bounded in absolute value by n~! times some non-
negative constant.

LEMMA 1. Let N\(M) > 0. The following hold for 1 <k <K:

1. If I\| <AL, then Onx = on™).

2. If Dy <D -1, then Q, , = 0(n1).

3. If D, =D and |\;| = |\, then

O i = S/ N'NTPWPTE + 0(n7).
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LEMMA 2. Let A(M) > 1 and |lw || < w < o for all n. The following hold for
1<k <K:

L If IN| < |, then s,  KN"C(n, D - 8)) = O(n").

2. If Dy <D -1, thens, ,//(\"C(n,D - 8)) = 0(n?).

3. If IN(| = |\l and D, = D, then

S /(N'C(n, D = 8)) = (N /N NPWPH, (D) + 0 Y),
lim s, /A"C(n,D = &) = N |~ PUWPT (A DI
n—POO
Furthermore, f,(2) is analytic for |z| < |\71|.
Remark. In part 3 of Lemmas 1 and 2 notice that lim,_, (A, /N)" exists if and
only if A, = X. Hence the following limit results hold if and only if A =N

im Q, ; =8N"PWPT!,  lim s,  /(\"C(n,D - 8)) = MTPWPE ().

1
n—>oco n—»oo
This point is the important key to hypothesis 3 which distinguishes between the root
and quotient order results of Theorems 1 and 2, because in order for the quotient
order result to hold, the limits above must hold. See also Eq. (17). 0
We now prove Theorem 1. Start from (1) in Jordan form

(11) Ynt1 =JIYn + Wy

Lety, , and W, . be the portions of the vectors y, and w, corresponding to the
Jordan block J; . It may be easily verified from Eqgs. (10) and (11) that

(12) Yk =JiYo,x + Sn, k>

where s, ; was given by (10). Let

(13) Yk = Yo k/(N'C(n, D - 8)).
Substitute (12) and (9) into (13). Then

(14) Yk = Qn Yo,k T Su,x/(N'C(n, D - §)).

Since ||w;,|| is bounded by hypothesis and U is a nonsingular matrix, lw, Il is also
bounded. Lemmas 1 and 2 may be applied. Parts 1 and 2 of the lemmas clearly show
that we need to consider only those components for which A= I\l and D, =D
both hold, for otherwise v, x — 0. Apply part 3 of Lemmas 1 and 2 to those com-
ponents to obtain

(15) Voo = u/N"NTPWR T {8y, L+ £ (DY + 0.

We are now ready to define the subspace hypothesis which is hypothesis 2 in
Theorems 1, 2, and 3:

(16) WP™1 {8y ; + f,(Ag")} # 0 for some k such that |\, | = |\| and D, = D.

(Recall that Yo, and f in (16) come from the Jordan transform of (1). Recall also
that, in Theorem 2, f, = 0 and § = 1, always.) Note (16) implies that the full vector
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v, has at least one component which, as n —> oo is bounded away from zero (recall
that |\, | = |A| # 0). By (13), the same is true for the vector y, and thus also for Y-
Since § = 0 when A(M) = 1, the subspace hypothesis becomes

WPt (A1) #0

for some k such that |\, | =1 and D, = D. There are many nontrivial situations that
yield fk()\—l) = 0. In such cases Theorem 1 cannot be applied although R(y,) = 1 and
Q(y,) = 1 may still hold. We shall not pursue this in the present paper.

To establish the root order result, take norms in (15).

1%, Il < INEPUWIPT By ll + I (DI + 0™).

Thus v,, is bounded in norm. Since C(n, D =8)/nP~% — 1/(D - 8)! as n — oo,
then

[ D6/
Y, =U""y, =\"'n""°v,

for some vector v;, which is bounded in norm and which by application of the sub-
space hypotheses is bounded away from zero for n sufficiently large. Therefore,
Iy It/" = IN|n@=® |y’ [1/n — \| asn—> oo,

Hence R(y,) = A(M).

To establish the quotient order result, we need to consider only k = 1 (by the
hypotheses of Theorem 1 and by Lemmas 1 and 2). Since A; = A, then Eq. (15) be-
comes (see the Remark following Lemma 2)

a7 v, = MNPWPT By, + £, + 0.

An application of the subspace hypothesis shows that v, ; has a nonzero limit as
n — oo, Thus there is some vector v;,, with a nonzero limit, for which

Y, = NP8y

’ !
Wneall <n+ 1>D_8 V1 — |\ asn-— o

lypll n Nl

Hence Q(y,,) = A(M) which completes the proof of Theorem 1. D
The proof of Theorem 2 is a minor modification of the proof of Theorem 1,
with s, , = 0, and is omitted.

5. Proofs of the Lemmas. The statements of Lemmas 1 and 2 were given in
Section 4 and will not be repreated here. Fix k for 1 <k <K. Let A, # 0, since
the results are trivial otherwise. Recall that § = 0 if |A\| = 1 and 6 = 1 otherwise.
Let n > D,. Then

Dy—1
JR=(NJ+W)'= 3 Ng™mC(n, m)W™,

m=0
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(18) JP=NC(n,D -8 vm _Cim) oy
k k( )mgok C(ﬂ,D"&)w .

Proof of Lemma 1. Substituting (18) into (9) yields

0. . = <_.> om _Com) m
nk T \X mz=:o k" C(n,D -29)
Since
C(n, m)/C(n,D - 8) = 0(n™P+8) <O * ) for0<m<D, -1,
then

10, ill < /AP OM°F D),

1. If [A,] <Al then Ikk/AI”O(nDk_D) =0 !). Thus Onk = O(n1), as
desired.

2. If D <D~ 1,then O(n" ¥ ") < O(n™") while [\e/A" < 1. Thus Q, , =
O(n™1), as desired.

3. If D, = D and |\, | = |Al, then

N\t PE? C(n, m)
— -m __ =\ )  ym — —1
(x) L " cmp-ay 00
m=0
by the proof of part 2 above. Hence Q, k is dominated by the term m = D, — 1;
that is,

e\ cn,D -1
_ [k 1-p C(n, ) D—1 -1
Qn,k <)\> 3>\k C(n,D - 5) W +0(n ).

Since 6 = 0 or 6 = 1, then

C(n,D-1)/Cn,D—-56)=38+ o).
Therefore

Qn,ik = 8N/ N"NTPWP™ + 01,

which completes the proof of Lemma 1. 0
Proof of Lemma 2. Write

(19) tn,k = _Z Jliwn—i,k‘

Recall (10) and apply |lw, || <w. Hence
Isn, i = taill <w 2 I, = O(D).
i=0

Hence

lim s, = t,  I/(\"C(n, D = 8)) = 0.

n—>oo
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Thus, it suffices to consider t, , instead of s, ;. Denote
(20) A,k = t, x/(\"C(n, D - 8)).
Substitute (18) with n = i and (19) into (20). Interchange the order of summation to
obtain
Pt C(i, m)
@D = L wm% 2 NN G, D gy Wnik(
=Dy
1. Suppose that |A, | < |A|. Consider 7, = 1 such that |\ | < |7, | < Al (74
will be picked later.) Letb, , denote the vector

Dk—l |
(22) b, ,= 2 Xwm 2 C(@, m)< >1”” i k-

m=0 I—Dk

Then Eq. (21) may be written as

r n
(23) Qo =<y"> b, ¢/C(n, D = 5).

Consider the functions Y, (z) = 2% oz and Y (z) = Z;;ozi. Since lim,,_, ¥ ,(z) =
Y(2) is analytic for |z| < 1, then limn_m\,bﬁ,'")(z) = yAm)(2) is also analytic, and thus
also absolutely convergent for |z| < 1 (superscript denotes differentiation). Thus

Wm(2)| < ym(|zl) for |z] < 1.
It is not hard to verify that

24) 3 Clmyel = - YD),

i=m
Since 0sm <D, —1,|N/7,1<1, I'rkl’"" 1 for D, <i<n,and |w, n—i, < w,
then the norm of (22) yields

Dy—1 )
(25) 1ol Sw 2 I W = O 7, 1) = b

m=0

Clearly, b = O(1). Take norms in (23) to obtain

T n
1, el < b ‘7" /C(n,D - 5).

If X > 1, choose 7, < |Al; in this case Q k= O(n"l). If [\l =1, thend = 0;in
this case 1/C(n, D — 6) = O(n~!) and thus Q= O(n~!). This establishes part 1
of Lemma 2.

2. Suppose that 1 <D, <D — 1. In view of part 1, it is only necessary to
prove part 2 when |\ | = |A]. Note that 0 <Sm <D, —1<D—2. If |]\| =1, then

2 C(i,m) i—n 2 Cli,m) _ Cn+1,m+1)
i:zl:)k cmp-5 """ < 2 ¢ D) C(n, D)

<o@mtiPy<o@™).
If |]A] > 1, then
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< C(l’ m) i—-n C!n D - 2) -1 5 i
,-=Zuk CmD-5) NS Cop= UFNTTHNTZ 4y <0(.

Thus, for [A\| > 1 and for 0 <m <D -2,

n C(, i—n _ _
(26) i=ZDk —C% " = 0o@m™).

Take norms in (21), apply |\, | = Al [Iw,, n—i,kll < w, and (26) to obtain liq,, .|l <
O(n™'). This establishes part 2 of Lemma 2.
3. Suppose that |A; | = |A| and D, =D. Then (21) becomes

D—1 n C(i m)

— —nyn—mym i-n >
9n,k mgox AW i=ZD>\k C(n,D - 3) Wi,k
=>\_knD— el e ZA C(n lm)
A Zz & "k C(n,D - 6)
We may write
A\ Dot .
(27) qn,k = T Z Akmwmfk,m,n()‘k )’
m=0
where f, ., (z) is the vector polynomial
28 - J_L_ml
(28) fem,n(2) .ZZC(nD 5) v
Hence
_ C@i, m)
(29) ”fk m, DN <w Z P m

Letz = A;l. Since |A,| = |X| > 1, we may apply (26) to (29) and obtain
fx o n (DI = O(n™ ') for0<m<D-2.

Thus q,, ; in (27) is dominated by the term with m = D — 1. Evaluate (29) with
m=D—1for |z| <|\N!|. If |]A\| > 1, then § = 1 and

C(n, D .
I o w0 G 3

wiA|

Swa+ T AT A = e

On the other hand if [A] = 1, then § = 0 and

Ik, p—1,n@I <w i C@D-1)- ls/C(n,D)

i=D-1

=w{C(n+1,D) - 1}/C(n,Dy < w(n + 1)/(n + 1 —-D)=0(1).

Thus fy ,_, ,(2) is bounded in norm uniformly in 7 for |z| < |\™'|. Hence

(30) fi(2) = nh_tnw £, 0-1,n(2)
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is analytic for |z| < |A7![. (In fact f, (z) is analytic for |z| < 1 when |A| = 1 and for
|z| <1 when |A| > 1.) Equation (27) may be written as

Ak = e/ N'NTPWPTH OZY + 07 Y.

To complete the proof, take norms, recall that |A\;| = |Al, and take the limit as n —

oo, O
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